POLI210: Political Science Research Methods

Lecture 10.2: Measures of association

Olivier Bergeron-Boutin November 4th, 2021

```
taken from Andrew Heiss' website
library(ggtext)
theme_custom <- function(){</pre>
  theme minimal(base size = 19,
           base family = "Fira Sans") %+replace%
 theme(legend.position = "none",
        panel.grid.minor = element blank(),
        plot.title = element markdown(face = "bold", size = 1
        plot.subtitle = element_markdown(face = "plain", size
        axis.title = element_text(face = "bold"),
        axis.title.x = element_text(margin = margin(t = 10),
        axis.title.y = element text(margin = margin(r = 10),
```

Some harmless fun

Boring admin stuff

- Problem set 4 has been posted
 - Do it: I take the 3 best grades out of 4 psets; 13.3% each
 - Don't do it: I take the 3 pset grades; 13.3% each
 - · Due November 15th
- · Midterm next week
 - · A combination of paragraph-length answers and essays
 - · Don't lose the forest for the trees!
 - Focus on the broad issues, not on specifics

Where we're going

We should now be able to describe the distribution of one variable

- The next step: describe how two variables move together
- We will speak of correlations
 - When one variable is big/small, does that give me a clue about whether some other variable is big/small?
- We want to judge correlations according to two criteria:
 - Direction
 - · Positive correlation: when x is big, y is also big
 - · Negative correlation: when x is big, y is small
 - · Strength
 - · How well can I guess the value of y if you give me x?
- · The correlation coefficient summarizes both of these
 - · It's a value between -1 and 1
 - · Closer to -1 or 1: stronger relationship
 - · Correlation of 0: no (linear) relationship
 - · The sign indicates the direction

Different correlations in scatterplots

Figure 1: Scatterplots with different correlations

The scatterplot as a visual tool: economic voting

Figure 2: Relationship between economic growth and incumbent vote share in the United States, 1792-2016. Data from Guntermann, Lenz, and Myers (2021).

Economic voting

The Pearson correlation coefficient:

```
cor(economy$gdpchangeyr3, economy$partyincshr, use = "pairwise")
```

```
## [1] 0.3763856
```

A positive, moderately strong relationship

 As GDP growth increases, vote share for the incumbent tends to increase as well

r	Rough meaning
+/-0.1-0.3	Modest
+/-0.3-0.5	Moderate
+/-0.5-0.8	Strong
+/-0.8-1	Very strong

Figure 3: Relationship between economic growth and incumbent vote share in the United States, 1792-2016. Data from Guntermann, Lenz, and Myers (2021).

Figure 4: Relationship between economic growth and incumbent vote share in the United States, 1792-2016. Data from Guntermann, Lenz, and Myers (2021).

It looks like the correlation is stronger for Republican incumbents!

Is this a causal relationship?

It looks like the correlation is stronger for Republican incumbents!

Is this a causal relationship?

- · Maybe...maybe not!
- We could think of many confounders
 - A confounders is related to both X and Y
 - · International economy, partisan control of Congress...

College majors: women and income

College majors: women and unemployment

College majors: correlation coefficients

```
cor(majors$ShareWomen, majors$Median,
    use = "pairwise")

## [1] -0.6186898

cor(majors$ShareWomen, majors$Unemployment_rate,
    use = "pairwise")
```

[1] 0.07320458

Share of women and Median salary: a strong negative correlation

Share of women and Unemployment: basically no association

TV shows

```
cor(show_level$`1`, show_level$`2`, use = "pairwise")
```

```
## [1] 0.8274108
```

Wow, that's a really strong correlation!

- · How to interpret?
- Knowing how well-rated the first season is, you can make a very good guess as to the rating of the second season
- Do you think the relationship is as strong between season 1 and season 5?

Seasons 1 and 5

```
cor(show_level_1_5$`1`, show_level_1_5$`5`, use = "pairwise")

## [1] 0.6334758

# you can change the order; doesn't matter
cor(show_level_1_5$`5`, show_level_1_5$`1`, use = "pairwise")

## [1] 0.6334758
```

The correlation is weaker, but still quite strong

- · Scatterplots are very useful always plot your data
- · But must be careful in how you interpret them
- The scale for seasons 1 and 5 is different → correlation looks weaker than it is

Linearity

The correlation coefficient evaluates linear covariation

- · What is a linear relationship?
- \cdot In response to a change in X,Y behaves in a particular way, no matter the value of X
- \cdot Non-linear relationship: the association between X and Y differs based on the value of X

Non-linearity: London Airbnb listings

Figure 5: Longitude and price of London (UK) Airbnb listings on March 4th, 2017

```
cor(london$price, london$longitude, use = "pairwise")
```

[1] -0.1262614 20

Equivalent relationships

Navigate to this link

- For all of these scatterplots, the summary stats are the same!
 - · Same mean, same correlation, etc.
- And yet, looking at the scatterplots, the relationships are very different
- · Always plot your data!
- Before doing any fancy statistics...
 - \cdot Look at the distribution of X
 - · Do any cases stand out?
 - \cdot Look at the distribution of Y
 - · Do any cases stand out?
 - \cdot Look at a scatterplot of X and Y
 - · Do any cases stand out?

Not plotting your data? You might screw up

Figure 7: Univariate Distribution of Turnout and Incumbent Party Vote in 2000. This figure compares the variables originally constructed in De La O (2013) via name matching (in columns 1 and 4), with the official turnout among registered voters and PRI vote share in the name-matching sample (columns 2 and 5) and in the GIS sample (columns 3 and 6).

Scatterplot matrices

References i